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Abstract

We develop a general equilibrium model of asset prices in which the benefits of technological
innovation are distributed asymmetrically. Financial market participants do not capture all
the economic rents resulting from innovative activity, even when they own shares in innovating
firms. Economic gains from innovation accrue partly to the innovators, who cannot sell claims
on the rents that their future ideas will generate. We show how the unequal distribution of
gains from innovation can give rise to a high risk premium on the aggregate stock market,
return comovement and average return differences among firms, and the failure of traditional
representative-agent asset pricing models to account for cross-sectional differences in risk premia.

∗An earlier version of this paper circulated under the title “Technological Innovation: Winners and Losers.” We
thank Andrew Abel, Hengjie Ai, Federico Belo, Jaroslav Borovička, John Campbell, Ian Dew-Becker, Bernard Dumas,
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Technological innovation is arguably the main driver of economic growth in the long run. However,

the economic value generated by new ideas is usually not shared equally. The popular press is rife

with rags-to-riches stories of new entrepreneurs, whose net worth rose substantially as a result of

their innovative ideas during technological booms such as those experienced in the 1990s and the

2000s. In addition to the large wealth gains for successful innovators, technological progress can

also create losses through creative destruction, as new technologies render old capital and processes

obsolete.

We show that the asymmetric sharing of gains and losses from technological innovation can

give rise to well-known, prominent empirical patterns in asset price behavior, including a high risk

premium on the aggregate stock market, return comovement and average return differences among

growth and value firms. We build a tractable general equilibrium model in which the benefits

of technological progress are distributed unevenly across investors and firms. Our model allows

for two forms of technological progress. Some advances take the form of improvements in labor

productivity, and are complementary to existing investments, while others are embodied in new

vintages of capital. Throughout the paper we refer to the first type of technological progress as

disembodied, and the second type as embodied.1 The latter type of technological progress leads to

more creative destruction, since old and new capital vintages are substitutes.

A prominent feature of our model is that the market for new ideas is incomplete. Specifically,

shareholders cannot appropriate all the economic rents generated by new technologies, even when

they own equity in the firms that develop those technologies. Our motivation for this market

incompleteness is that ideas are a scarce resource, and the generation of ideas relies heavily on

human capital. As a result, innovators are able to capture a fraction of the economic rents that

their ideas generate. The key friction is that potential innovators cannot sell claims to these future

rents. This market incompleteness implies that technological progress has an asymmetric impact

on household wealth. Most of the financial benefits from innovation accrue to a small fraction

of the population, while the rest bear the cost of creative destruction. This reallocative effect of

technological progress is particularly strong when innovations are embodied in new capital goods.

By exposing households to idiosyncratic randomness in innovation outcomes, improvements in

technology can thus reduce households’ indirect utility. This displacive effect on indirect utility is

amplified when households also care about their consumption relative to the economy-wide average,

since households dislike being ‘left behind’.

Displacement risk contributes to the equity risk premium and also leads to cross-sectional

differences in asset returns. Owning shares in growth firms helps offset potential utility losses

1Berndt (1990) gives the following definitions for these two types of technology shocks: “Embodied technical
progress refers to engineering design and performance advances that can only be embodied in new plant or equipment;
older equipment cannot be made to function as economically as the new, unless a costly remodelling or retrofitting of
equipment occurs,” and “by contrast, disembodied technical progress refers to advances in knowledge that make more
effective use of all inputs, including capital of each surviving vintage (not just the most recent vintage). In its pure
form, disembodied technical progress proceeds independently of the vintage structure of the capital stock. The most
common example of disembodied technical progress is perhaps the notion of learning curves, in which it has been
found that for a wide variety of production processes and products, as cumulative experience and production increase,
learning occurs which results in ever decreasing unit costs.”
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brought on by technological improvements. In our model, firms differ in their ability to acquire

projects that implement new technologies. This difference in future growth opportunities implies that

technological progress has a heterogeneous impact on the cross-section of asset returns. Firms with

few existing projects, but many potential new investment opportunities, benefit from technological

advances. By contrast, profits of firms that are heavily invested in old technologies and have

few growth opportunities decline due to increased competitive pressure. In equilibrium, investors

hold growth firms, despite their lower expected returns, as a hedge against the potential wealth

reallocation that may result from future technological innovation. Aggregate consumption does not

accurately reflect all the risks that households face as a result of technological progress, implying

the failure of traditional representative-agent asset pricing models to account for cross-sectional

differences in risk premia.

We estimate the parameters of the model using indirect inference. The baseline model performs

well at replicating the joint properties of aggregate consumption, investment, and asset returns that

we target. In particular, the model generates an aggregate consumption process with moderate

low-frequency fluctuations; volatile equity returns; a high equity premium; a low and stable risk-free

rate; and the observed differences in average returns between value and growth stocks (the value

premium). Jointly replicating these patterns has proven challenging in existing representative-agent

general equilibrium models. These results depend on three key features of our model: technology

advances that are embodied in new capital goods, incomplete market for ideas, and preferences

over relative consumption. Restricted versions of the model that eliminate any one of these three

features have difficulty replicating the empirical properties of asset returns, and especially the

cross-sectional differences in stock returns between value and growth firms. In sum, these three

features are responsible for generating sufficient displacement risk in the model, and ensuring that

households care sufficiently about displacement to endure that the embodied shock carries a negative

risk price.

In addition to the features of the data that we target, we evaluate the model’s other implications

for asset returns. The model generates realistic predictions about income and wealth inequality,

especially at the top of the distribution. Importantly, the model replicates the observed patterns of

comovement between value and growth stocks (the value factor) and the failure of the Capital Asset

Pricing Model (CAPM) and the Consumption CAPM to explain the value premium.2 In addition,

the model generates an upward-sloping real yield curve and a downward-sloping term structure of

2The value ‘puzzle’ consists of two robust empirical patterns. First, firms with higher than average valuations–
growth firms–experience lower than average future returns. These differences in average returns are economically large
and comparable in magnitude to the equity premium. This finding has proven to be puzzling because growth firms are
typically considered to be riskier and therefore should command higher average returns. Existing asset pricing models,
such as the CAPM and the CCAPM, largely fail to price the cross-section of value and growth firms. Second, stock
returns of firms with similar valuation ratios exhibit comovement, even across industries. These common movements
are typically unrelated to the firms’ exposures to fluctuations in the overall market value. See Fama and French (1992,
1993) for more details. Similar patterns to the returns of high market to book firms have been documented for firms
with high past investment (Titman, Wei, and Xie, 2004) or price-earnings ratios (Rosenberg, Reid, and Lanstein,
1985).The strong patterns of return comovement among firms with similar characteristics have motivated the use of
empirical factor models (Fama and French, 1993). However, the economic origins of these empirical return factors are
yet to be fully understood. Our work can thus be viewed as providing a micro-foundation for including the value
factor in reduced-form asset pricing models.
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risk premia on ‘corporate payout strips’.

In the last part of the paper, we provide additional evidence that directly relates to the main

mechanism in the model. Most of the model’s predictions rely on the fluctuations in the share

of economic value that is generated by new innovative ideas, or blueprints – a quantity that is

challenging to measure empirically. We construct an empirical estimate of this share using data on

patents and stock returns collected by Kogan, Papanikolaou, Seru, and Stoffman (2017). Following

Kogan et al. (2017), we infer the economic value of patents from the firms’ stock market reaction

following a successful patent application.3 The correlations between the estimated value of new

blueprints and aggregate quantities and prices are largely consistent with the model. Increases in the

value of new blueprints are associated with higher aggregate investment, lower market returns, and

higher returns for growth firms relative to value firms. Further, increases in the relative value of new

blueprints are associated with increases in consumption, income, and wealth inequality. Consistent

with the model, high-Q firms are more likely to innovate in the future than low-Q firms. Last, we

find that rapid technological progress within an industry is associated with lower future profitability

for low Tobin’s Q (value) firms relative to high-Q (growth) firms. We replicate these results in

simulated data from the model, the empirical estimates are in most cases close to those implied by

the model. We interpret these findings as providing support for the model’s main mechanism.

In sum, the main contribution of our work is to develop a general equilibrium model that

introduces a new mechanism: it relates increases in inequality following technological innovations

to the pricing of shocks to technology in financial markets.4 Our work thus adds to the growing

literature studying asset prices in general equilibrium models.5 Conceptually closest to our paper is

Garleanu, Kogan, and Panageas (2012), who study the value premium puzzle in an overlapping-

3 Relative to other measures of innovation, such as patent citations, the stock market reaction to patent issues has
the unique advantage of allowing us to infer the economic – as opposed to the scientific – value of the underlying
innovations. Focusing on the days around the patent is issued allows us to infer the economic value over a narrow time
window. However, the stock market reaction may underestimate the value of the patent when some of the information
about the innovation is already priced in by the market. Further, our analysis misses the patents issued to private
firms, as well as those inventions that are not patented. Our analysis should thus be viewed as a joint test of the
model and the assumption that movements in the economic value of patented innovations are representative of the
fluctuations in the overall value of new inventions in the economy.

4Kogan and Papanikolaou (2013, 2014) feature a similar structural model of the firm in a partial equilibrium setup.
Partial equilibrium models are useful in connecting factor risk exposures to firm characteristics. However, they take
the stochastic discount factor (SDF) as given. Reduced-form specifications of the SDF can arise in economies in which
all cross-sectional variation in expected returns is due to sentiment (see, e.g. Nagel, Kozak, and Santosh, 2014). A
general equilibrium model is necessary to connect the SDF to the real side of the economy.

5Related to this paper, Papanikolaou (2011) and Garleanu, Panageas, and Yu (2012) are representative agent
models which also capital-embodied technology shocks. Papanikolaou (2011) focuses on the pricing of embodied
shocks in an environment with a representative firm and complete markets. In his model, capital-embodied shocks
carry a negative risk premium due to agents’ aversion to short-run consumption fluctuations. The mechanism in
Papanikolaou (2011) requires that positive capital-embodied shocks are associated with reductions in aggregate
consumption on impact. The empirical evidence for this is mixed. By contrast, we propose a different mechanism that
leads to a negative risk price for embodied shocks. Garleanu, Panageas, and Yu (2012) focus on understanding the
joint time-series properties of consumption and excess asset returns; our main focus is on the model’s cross-sectional
implications. Closely related work also features heterogenous firms. Gomes, Kogan, and Zhang (2003) study the
cross-section of risk premia in a model where technology shocks are complementary to all capital. Pastor and Veronesi
(2009) study the pricing of technology risk in a model with a life-cycle of endogenous technology adoption. Ai, Croce,
and Li (2013) analyze the value premium in a model where some technology shocks only affect the productivity of old
capital. However, all of these studies consider representative-agent models.
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generations economy where technological improvements lead to inter-generational displacement

risk.6

Our model contains features that connect it to several other strands of the literature. A key

part of our model mechanism is that technological progress endogenously increases households’

uninsurable consumption risk. The fact that time-varying cross-sectional dispersion of consumption

can increase the volatility of the stochastic discount factor is well known (Constantinides and Duffie,

1996). However, whereas the existing literature uses reduced-form specifications of idiosyncratic

labor income risk, in our setting the time variation in households’ uninsurable risk arises as an

equilibrium outcome. The resulting effect of idiosyncratic risk on asset prices is further amplified

by households’ preferences over relative consumption. Our work thus builds upon the extensive

literature that emphasizes the role of consumption externalities and relative wealth concerns for asset

prices, investment, and consumption dynamics (Duesenberry, 1949; Abel, 1990; Roussanov, 2010).

Closest to our work is Roussanov (2010), who argues that households may invest in risky, zero-mean

gambles whose payoffs are uncorrelated with the aggregated state when they have preferences over

their rank in the consumption distribution. In our setting, preferences over relative consumption

induce agents to accept low risk premia (or equivalently high valuations) to hold assets that increase

in value when technology prospects improve—growth firms. Last, the idea that a significant fraction

of the rents from innovation accrue to human capital is related to Atkeson and Kehoe (2005), Lustig,

Syverson, and Van Nieuwerburgh (2011) and Eisfeldt and Papanikolaou (2013). In contrast to these

papers, we explore how fluctuations in the value of these rents affect the equilibrium pricing of

technology shocks.

I. The Model

We consider a dynamic continuous-time economy, with time indexed by t. We first introduce the

productive sector of the economy – firms and the projects they own. We next introduce households,

and describe the nature of market incompleteness in our setup.

6Our paper shares some of the elements in their model, namely incomplete markets. Specifically, in Garleanu,
Kogan, and Panageas (2012), consumption inequality is an inter-generational phenomenon; there is no inequality in
consumption within household cohorts. This stylized assumption makes the model analytically tractable but makes it
difficult to reconcile the model with the patterns of inequality in the data. For instance, income inequality within
cohorts is typically much larger than inequality between cohorts (O’Rand and Henretta, 2000). Also, Song, Price,
Guvenen, Bloom, and von Wachter (2015) document that most of the rise in income inequality over the 1978 to 2012
period is within-cohorts. In Section C.3 of the Online Appendix, we perform a variance decomposition exercise and
show that most of the inequality in consumption, income, or wealth exists within cohorts. Allowing for intra-cohort
heterogeneity is a nontrivial analytical challenge, because models of individual heterogeneity with incomplete markets
and aggregate shocks typically do not aggregate to a finite-dimensional state space. Another contribution of our
paper is thus to provide a tractable model with individual heterogeneity and aggregate shocks that has realistic
implications for inequality. Unlike Garleanu, Kogan, and Panageas (2012), our model also incorporates firm investment
and generates a realistic (and stationary) cross-sectional distribution of firms. In sum, the fact that the model has
realistic predictions about inequality and firm heterogeneity, allows for a more rigorous evaluation of the quantitative
importance of the mechanism.
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A. Firms and Technology

The basic production unit in our economy is called a project. Projects are owned and managed by

firms. Each firm hires labor services to operate the projects it owns. The total output of all projects

can be used to produce either consumption or investment. New production units are created using

investment goods and project blueprints (ideas). Households supply labor services and blueprints to

firms, and derive utility from consumption. Figure 1 summarizes the structure of our model.

Households

Firms

Labor (L)

Ideas 
(blueprints)

Consumption (C)

Investment (I)

New Capital

Fig. 1.—Production

Active projects.—Each firm f owns a constantly evolving portfolio of projects, which we denote

by Jft. We assume that there is a continuum of infinitely lived firms in the economy, which we index

by f ∈ [0, 1]. Projects are differentiated from each other by three characteristics: a) their operating

scale, determined by the amount of capital goods associated with the project, k; b) the systematic

component of project productivity, ξ; and c) the idiosyncratic, or project-specific, component of

productivity, u. Project j, created at time τ(j), produces a flow of output equal to

Yj,t =
(
uj,t e

ξτ(j) Kj,t

)φ
(ext Lj,t)

1−φ , (1)

where Lj,t is labor allocated to project j. In contrast to the scale decision, the choice of labor

allocated to the project Lj,t can be freely adjusted every period. Firms purchase labor services at

the equilibrium wage wt. We denote by

Πj,t = sup
Lj,t

[(
uj,t e

ξτ(j) Kj,t

)φ
(ext Lj,t)

1−φ −wt Lj,t

]
(2)

the profit flow of project j under the optimal hiring policy.

We emphasize one important dimension of heterogeneity among technological innovations by

modeling technological progress using two independent processes, ξt and xt. First, the shock ξ
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reflects technological progress embodied in new projects. It follows an arithmetic random walk

dξt = µξ dt+ σξ dBξ,t, (3)

where Bξ is a standard Brownian motion. ξs denotes the level of frontier technology at time s.

Growth in ξ affects only the output of new projects created using the latest frontier of technology.

In this respect our model follows the standard vintage-capital model of Solow (1960).

Second, the labor-augmenting productivity process xt follows an arithmetic random walk

dxt = µx dt+ σx dBx,t. (4)

Here, Bx is a standard Brownian motion independent of all other productivity shocks. In particular,

the productivity process x is independent from the embodied productivity process ξ. Labor in our

model is complementary to capital. Thus, in contrast to the embodied shock ξ, the technology

shock x affects the output of all vintages of existing capital.

The level of project-specific productivity uj is a stationary mean-reverting process that evolves

according to

duj,t = κu(1− uj,t) dt+ σu uj,t dB
u
j,t, (5)

where Bu
j are standard Brownian motions independent of Bξ. We assume that dBu

j,t · dBu
j′,t = dt if

projects j and j′ belong in the same firm f , and zero otherwise. As long as 2κu ≥ σ2u, the ergodic

distribution of u has finite first two moments (see Lemma 1 in Appendix A for details). All new

projects implemented at time s start at the long-run average level of idiosyncratic productivity,

i.e., uj,τ(j) = 1. Thus, all projects created at a point in time are ex-ante identical in terms of

productivity, but differ ex-post due to the project-specific shocks.

The firm chooses the initial operating scale k of a new project irreversibly at the time of its

creation. Firms cannot liquidate existing projects and recover their investment costs. Over time,

the scale of the project diminishes according to

dKj,t = −δ Kj,t dt, (6)

where δ is the economy-wide depreciation rate. At this stage, it is also helpful to define the aggregate

stock of installed capital, adjusted for quality,

Kt =

∫ 1

0

 ∑
j∈Jf,t

eξτ(j) Kj,t

 df (7)

The aggregate capital stock K also depreciates at rate δ.

Creation of new projects.—Creating a new project requires a blueprint and new investment

goods. Firms are heterogeneous in their ability to acquire new blueprints. Inventors initially own

the blueprints for creation of new projects. We assume that inventors lack the ability to implement

these ideas on their own, and instead sell the blueprints for new projects to firms (we outline the
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details of the process for blueprint sales below).

Firms acquire projects by randomly meeting inventors who supply blueprints. The likelihood of

acquiring a new project is exogenous to each firm, driven by a doubly stochastic Poisson process

Nf,t with increments independent across firms. The arrival rate of new projects equals λf,t. This

arrival rate is time-varying and follows a two-state continuous-time Markov chain with high and low

growth states {λH , λL}, λH > λL. The transition rate matrix is given by(
−µL µL

µH −µH

)
. (8)

We denote the unconditional average of λf,t by λ. The stochastic nature of λft has no effect on the

aggregate quantities in the model. Parameters of this process control the cross-sectional differences

in investment, valuation ratios and systematic risk among firms.

To implement a new blueprint as a project j at time t, a firm purchases new capital goods in

quantity Ij,t. Investment in new projects is subject to decreasing returns to scale,

Kj,t = Iαj,t. (9)

The parameter α ∈ (0, 1) parameterizes the investment cost function and implies that costs are

convex at the project level.

The value of new ideas (blueprints) plays a key role in our analysis. We denote by

νt ≡ sup
Kj,t

{
Et

[∫ ∞
t

Λs
Λt

Πj,s ds

]
−K1/α

j,t

}
(10)

the net value of a new project implemented at time t under the optimal investment policy, where

Λt is the equilibrium stochastic discount factor defined in Section D.. Since all projects created at

time t are identical ex-ante, ν is independent of j. Equation (10) is also equal to the value of a new

blueprint associated at time t. When we take the model to the data, we will proxy for the value

of new projects (10) using the estimates of the value of new patents based on the methodology of

Kogan et al. (2017).

Aggregate output.—The total output in the economy is equal to the aggregate of output of all

active projects,

Yt =

∫ 1

0

 ∑
j∈Jf,t

Yj,t

 df. (11)

The aggregate output of the economy can be allocated to either investment It or consumption Ct,

Yt = It + Ct. (12)

The amount of new investment goods It produced is used as an input in the implementation of new

projects, as given by the investment cost function defined in (9).
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B. Households

There is a continuum of households, with the total measure of households normalized to one.

Households die independently of each other according to the first arrival of a Poisson process with

arrival rate δh. New households are born at the same rate, so the total measure of households

remains constant. All households are endowed with the unit flow rate of labor services, which they

supply inelastically to the firms producing the final good.

Households have access to financial markets, and optimize their life-time utility of consumption.

Households are not subject to liquidity constraints; hence, they sell their future labor income streams

and invest the proceeds in financial claims. We denote consumption of an individual household i by

Ci,t.

All shareholders have the same preferences, given by

Jt = lim
τ→∞

Et

[∫ τ

t
Υ(Cs, Js; C̄s) ds

]
, (13)

where Υ(C, J ; C̄) is the utility aggregator:

Υ(C, J ; C̄) =
ρ

1− θ−1


(
C1−h (C/C̄)h)1−θ−1

((1− γ)J)
γ−θ−1

1−γ

− (1− γ) J

 . (14)

Households’ preferences fall into the class of stochastic differential utility proposed by Duffie and

Epstein (1992), which is a continuous-time analog of the preferences proposed by Epstein and

Zin (1989). Relative to Duffie and Epstein (1992), our preference specification also incorporates

a relative-consumption concern (“keeping up with the Joneses”, see, e.g., Abel, 1990). That is,

households also derive utility from their consumption relative to aggregate consumption,

C̄ =

∫ 1

0
Ci,t di. (15)

The parameter h captures the strength of the relative consumption effect; γ is the coefficient of

relative risk aversion; θ is the elasticity of intertemporal substitution (EIS); and ρ is the effective

time-preference parameter, which includes the adjustment for the likelihood of death.

C. Household Innovation

The key feature of our model is imperfect risk sharing among investors. Households are endowed

with ideas, or blueprints, for new projects. Inventors do not implement these project on their own.

Instead, they sell the ideas to firms. Inventors and firms bargain over the surplus created by new

projects; the inventor captures a share η of the net present value of a new project.

Each household receives blueprints for new projects according to an idiosyncratic Poisson process

with arrival rate µI . In the aggregate, households generate blueprints at the rate equal to the total

measure of projects acquired by firms, λ. Not all innovating households receive the same measure of
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new blueprints. Each household n receives a measure of projects in proportion to her wealth Wn,t

– that is, equal to λWn,t

(
µI
∫ 1
0 Wi,t di

)−1
. This is a technical assumption that is important for

tractability of the model, as we discuss below. Thus, conditional on innovating, wealthier households

receive a larger measure of blueprints.

Importantly, households cannot trade in securities contingent on future successful individual

innovation. That is, they cannot sell claims against their proceeds from future innovations. This

restriction on risk sharing plays a key role in our setting. In equilibrium, wealth creation from

innovation leads to changes in the cross-sectional distribution of wealth and consumption, and

therefore affects households’ financial decisions.

D. Financial Markets

We assume that agents can trade a complete set of state-contingent claims contingent on the paths of

the aggregate and idiosyncratic productivity processes, as well as paths of project arrival rates and

project arrival events at the firm level. We denote the equilibrium stochastic discount factor by Λt.

In addition, we follow Blanchard (1985) and assume that investors have access to competitive annuity

markets that allow them to hedge their mortality risk. This assumption implies that, conditional on

surviving during the interval [t, t+ dt], investor n collects additional income proportional to her

wealth, δhWn,t dt.

E. Discussion of the Model’s Assumptions

Most existing production-economy general equilibrium models of asset returns build on the neoclas-

sical growth framework. We depart from this literature in three significant ways.

a. Technological progress is embodied in new capital vintages. Most existing general equilibrium

models that study asset prices assume that technological progress is complementary to the entire

existing stock of capital – as is the case for the x shock in our model. However, many technological

advances are embodied in new capital goods and thus only benefit firms which invest in the new

capital vintages. Several empirical studies show substantial vintage effects in plant productivity. For

instance, Jensen, McGuckin, and Stiroh (2001) finds that the 1992 cohort of new plants was 50% more

productive than the 1967 cohort in their respective entry years, controlling for industry-wide factors

and input differences. Further, an extensive literature documents a significant impact of embodied

technological progress on economic growth and fluctuations (see, e.g. Greenwood, Hercowitz, and

Krusell, 1997; Fisher, 2006). Since technological progress can take many forms, we distinguish

between embodied and disembodied technological progress to obtain a broader understanding of

how technological change affects asset returns.

In our model, capital-embodied technical change introduces a wedge between the value of installed

capital and the value of future growth opportunities. This allows our model to deliver a realistic

degree of heterogeneity in investment, valuations, and stock returns among firms. Furthermore,

because of their heterogenous impact on the different sources of wealth, embodied shocks combined

with incomplete markets help generate realistic levels of consumption inequality within the model.
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b. Incomplete markets for innovation. Incomplete markets play a key role in our analysis. In the

model, inventors generate new ideas and sell them to firms. Importantly, the economic value that is

generated by new ideas cannot be fully pledged to outside investors. The goal of this assumption is

to allow for a heterogeneous impact of technology shocks on households, which implies that the

technology risk exposures of individual investors are not fully captured by aggregate consumption

dynamics.

We should emphasize that our interpretation of ‘inventors’ is quite broad. For example, the term

‘inventors’ can include: highly skilled personnel, who generate new inventions or business ideas;

entrepreneurs and startup employees, who can extract a large share of the surplus created by new

ideas; angel investors and venture capitalist, who help bring these ideas to market; and corporate

executives who decide how to optimally finance and implement these new investment opportunities.

In sum, ‘inventors’ in our model encapsulate all parties that share the rents from new investment

opportunities besides the owners of the firm’s publicly-traded securities. Further, the exact process

by which inventors and shareholders share the rents from new technologies can take many forms.

One possibility is that inventors work for existing firms, generate ideas, and receive compensation

commensurate with the economic value of their ideas. Since their talent is in scarce supply, these

skilled workers may be able to capture a significant fraction of the economic value of their ideas.

Another possibility is that inventors implement the ideas themselves, creating startups that are

partly funded by outside investors. Innovators can then sell equity in these startups to investors

and thus capture a substantial share of the economic value of their innovations.7

The assumption that households cannot share rents from innovation ex-ante can be motivated

on theoretical grounds. New ideas are the product of human capital, which is inalienable. Hart

and Moore (1994) show that the inalienability of human capital limits the amount of external

finance that can be raised by new ventures. Bolton, Wang, and Yang (2015) characterize a dynamic

optimal contract between a risk averse entrepreneur with risky inalienable human capital, and firm

investors. The optimal contract involves a trade-off between risk sharing and incentives, and leaves

the entrepreneur with a significant fraction of the upside.

c. Preferences over relative consumption. Quantitative asset pricing models often assume

relative consumption preferences, which help increase household’s aversion to consumption growth

volatility and thus raising the equilibrium compensation for bearing consumption risk (Abel, 1990;

Constantinides, 1990; Campbell and Cochrane, 1999). In our model relative consumption preferences

make households averse to consumption inequality, thus magnifying the effect of limited sharing of

innovation risk.

The assumption of relative consumption preferences is theoretically appealing and has direct

empirical support. Rayo and Becker (2007) propose a theory in which peer comparisons are an

integral part of the “happiness function” as a result of an evolutionary process. DeMarzo, Kaniel,

and Kremer (2008) show that competition over scarce resources can make agents’ utilities dependent

7Possibly, the threat of implementing the idea themselves may be what ensures that existing employees can
appropriate some fraction of the benefits. According to Bhide (1999), 71% of the founders of firms in the Inc 500 list of
fast growing technology firms report that they replicated or modified ideas encountered through previous employment.
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on the wealth of their cohort. In particular, if households have preferences over a consumption

basket Ĉ = C1−κHκ, where C is non-durable consumption and H is a consumption good that is

in inelastic supply – for instance, land or local services such as education – then the household

makes intertemporal choices as if it has preferences over the composite good Ĉ ′ = C1−κwκ, where

w denotes the household’s wealth share.

In a series of seminal papers, Easterlin notes that income and self-reported happiness are

positively correlated across individuals within a country but that average happiness within countries

does not seem to rise over time as countries become richer (see, e.g. Easterlin, 1974). Easterlin

interprets these findings as evidence that relative—rather than absolute—income matters for well-

being. Consistent with this view, several empirical studies document that, controlling for household

income, income of a peer group is negatively related to self-reported measures of happiness and

satisfaction (Clark and Oswald, 1996; Luttmer, 2005; Card, Mas, Moretti, and Saez, 2012). These

relative income concerns are substantial. For example, the point estimates in Luttmer (2005) imply

that the income of households in the same metropolitan area is more important for happiness than

the households’ own level of income. Frydman (2015) finds direct evidence for utility preferences

over relative wealth in an experimental setting using neural data collected through fMRI.

In Section E. we describe the sensitivity of our quantitative results to assumptions (a) to (c).

In addition to these three main assumptions, our model deviates in some other respects from the

neoclassical framework. These deviations make the model tractable but do not drive our main

results.

First, we assume that projects arrive independently of the firms’ own past decisions, and firms

incur convex investment costs at the project level. Together, these assumptions ensure that the

optimal investment decision can be formulated as a static problem, thus implying that the cross-

sectional distribution of firm size does not affect equilibrium aggregate quantities and prices. Second,

the assumption that innovating households receive a measure of projects that is proportional to their

existing wealth, together with homotheticity of preferences, implies that all households are solving

the same consumption-portfolio choice problem. In equilibrium, households do not trade with each

other – similar to Constantinides and Duffie (1996) – and their optimal consumption and portfolio

choices scale in proportion to their wealth. The cross-sectional distribution of household wealth

then does not affect equilibrium prices.8 Third, households in our model have finite lives. This

assumption ensures the existence of a stationary distribution of wealth among households. Fourth,

our assumption that project productivity shocks are perfectly correlated at the firm level ensures

that the firm state vector is low-dimensional. Last, there is no cross-sectional heterogeneity among

the quality of different blueprints. We could easily allow for an idiosyncratic part to ξ, perhaps

allowing for substantial skewness in this component, to capture the notion that the distribution

of profitability of new ideas can be highly asymmetric. Our conjecture is that such an extension

8The assumption that the magnitude of innovation is proportional to households’ wealth levels likely weakens our
main results compared to the case where all households received the same measure of blueprints upon innovating. In
the latter case, wealthier households would benefit less from innovation, raising their exposure to innovation shocks
relative to our current specification.
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would strengthen our main results by raising the level of idiosyncratic risk of individual households’

consumption processes.

F. Competitive Equilibrium

Here, we describe the competitive equilibrium of our model. Our equilibrium definition is standard,

and is summarized below.

Definition 1 (Competitive Equilibrium) The competitive equilibrium is a sequence of quanti-

ties {Ct, It, Yt,Kt}; prices {Λt,wt}; household consumption decisions {Ci,t}; and firm investment

and hiring decisions {Ij,t, Lj,t} such that given the sequence of stochastic shocks {xt, ξt, uj,t, Nf,t},
j ∈ ⋃f∈[0,1] Jf,t, f ∈ [0, 1]: i) households choose consumption and savings plans to maximize

their utility (13); ii) household budget constraints are satisfied; iii) firms maximize profits; iv) the

labor market clears,
∫ 1
0

(∑
j∈Jf,t Lj,t

)
df = 1; v) the demand for new investment equals supply,∫ 1

0 In,tdn = It; vi) the market for consumption clears
∫ 1
0 Cn,t dn = Ct, and vii) the aggregate resource

constraint (11) is satisfied.

We solve for equilibrium prices and quantities numerically. Because of market incompleteness,

standard aggregation results do not apply. Specifically, there are two dimensions of heterogeneity

in the model: on the supply side, among firms; and on the demand side, among households.

Both of these sources of heterogeneity can potentially make the state space of the model infinite-

dimensional. However, the first two assumptions discussed above in Section E. enable a relatively

simple characterization of equilibrium; we can solve for aggregate-level quantities and prices in

Definition 1 as functions of a low-dimensional Markov aggregate state vector.

Specifically, the first moment of the cross-sectional distribution of installed capital K summarizes

all the information about the cross-section of firms relevant for the aggregate dynamics in the model.

As a result, the real side of the model aggregates to a model with a representative firm, where

aggregate output is equal to

Yt = Kφ
t (ext Lt)

1−φ , (16)

where the effective stock of capital K defined in equation (7), evolves according to

dKt

Kt
= −δ dt+ λ

eξt

Kt

(
It
λ

)α
dt, (17)

where It is aggregate investment expenditures, which satisfy the aggregate resource constraint (12).

The capital accumulation equation (17) illustrates that the embodied shock ξ acts as an investment-

specific shock.

The net present value of new projects νt summarizes the marginal value of new investments.

Specifically, the first-order condition for investment in (10), combined with market clearing, imply

that in equilibrium,

It =
λα

1− ανt. (18)
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Examining (18), we see that, conceptually, νt plays a similar role in our model as the Tobin’s Q in a

neoclassical model. There are two key differences however. First, in our setting, the market value of

a new project is not directly linked to the average Q of the firm. Second, equation (18) holds in

levels, not ratios, as in the neoclassical model.

Aggregate quantities in the model (denominated in units of consumption) have both a permanent

and a temporary component. To see this, note that we can express most quantities of interest as

functions of two aggregate state variables: a random walk component,

χt =
1− φ

1− αφ xt +
φ

1− αφξt, (19)

and a stationary component,

ωt = ξt + αχt − logKt. (20)

The trend variable χt is a function of the two technology shocks, and thus determines long-run

growth in the model. The variable ω determines the conditional growth rate in the effective capital

stock K in equilibrium, and therefore expected consumption growth. In a non-stochastic model, ω

would be constant; in our stochastic model, ω is stationary. As a result, we can write aggregate

output (16) as

log Yt = χt − φωt, (21)

where we have used the fact that aggregate labor supply is constant, Lt = 1.

Aggregate consumption C, investment I, labor income w, and asset prices are cointegrated

with aggregate output Y—they share the same stochastic trend, χt. Their transitory deviations

from output (or χt) are functions of ωt – which can be interpreted as the deviation of the current

capital stock from its target level. Put differently, the state variable ω summarizes the transitory

fluctuations of the model variables around the stochastic trend χt.

II. Illustrating the Model’s Mechanism

To obtain some intuition about the asset pricing predictions of the model, we begin by analyzing

the relation between technological progress, the stochastic discount factor (SDF), and asset returns.

A. The pricing of technology risk

The two technology shocks x and ξ affect the equilibrium SDF through their impact on the

consumption of individual agents. Because of imperfect risk sharing, there is a distinction in how

these shocks affect aggregate quantities and how they affect individual households. To emphasize this

distinction, we first analyze the impact of technology on aggregate economic output and consumption,

and then examine its impact on the distribution of consumption for individual households.

Aggregate quantities and asset prices.—We calculate the impulse responses to the technology

shocks x and ξ for aggregate output Yt, consumption Ct, investment It, labor income wt and aggregate

payout to shareholders Dt, which is equal to total firm profits minus investment expenditures and
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payout to new inventors,

Dt = φYt − It − η λ νt. (22)

In the model, corporate payout is not restricted to be positive; nevertheless, using our parameter

estimates, D becomes negative only in the extreme ranges of the state space that are not reached in

model simulations.

Figure 2 plots these impulse responses.9 Panel A shows that a positive disembodied technology

shock x leads to an increase in output, consumption, investment, payout, and labor income. The

increase in investment leads to higher capital accumulation, so the increase in output is persistent.

However, since x is complementary to existing capital, most of its benefits are immediately realized.

In panel B, we plot the response of these equilibrium quantities to a technology shock ξ that is

embodied in new capital. In contrast to the disembodied shock x, the technology shock ξ affects

output only through the formation of new capital stock. Consequently, it has no immediate effect

on output, and only leads to a reallocation of resources from consumption to investment on impact.

Further, shareholder payout declines immediately after the shock, as firms cut dividends to fund

new investments. In the medium run, the increase in investment leads to a gradual increase in

output, consumption, payout, and the equilibrium wage (or labor income).

Next, we examine the impact of technology on the prices of financial assets and human capital.

The total wealth of all existing households,

Wt ≡
∫ 1

0
Wn,t dn = Vt +Gt +Ht, (23)

is the sum of three components: the value of a claim on the profits of all existing projects Jt,

Vt ≡
∫ 1

0
Et

 ∑
j∈Jf,t

∫ ∞
t

Λs
Λt

Πj,s

 df, (24)

the value of new growth opportunities that accrues to shareholders,

Gt ≡(1− η)

∫ 1

0

Et

[∫ ∞
t

Λs
Λt

λf,sνs ds

]
df, (25)

and the present value of labor services to households,

Ht ≡ Et

[∫ ∞
t

e−δ
h(s−t) Λs

Λt
ws ds

]
. (26)

Figure 3 plots impulse responses for these components, along with the risk-free rate and νt/Wt,

which plays a key role in our subsequent analysis. A positive technology shock increases expected

9To create plots, we use the parameter values in column three of Table A.2 in the Online Appendix, which
correspond to the baseline model discussed here. Since the goal of this section is to describe the qualitative features
of the model, we postpone the discussion of how these parameters are estimated until Section III.. That said, the
model’s qualitative implications are similar across several parametrizations.
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A. Response to x (disembodied shock)
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B. Response to ξ (embodied shock)
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Fig. 2.—Technology and Aggregate Quantities. We plot the impulse response of aggregate output, investment and
consumption expenditures to the two technology shocks in the model. We construct the impulse responses taking into
account the nonlinear nature of equilibrium dynamics: we introduce an additional one-standard deviation shock at
time t = 0 without altering the realizations of all future shocks. In our model, the scalar state variable ω summarizes
all relevant information for the model’s non-linear dynamics. The impulse responses are computed at the mean
of the stationary distribution of ω. We report the log difference between the mean response of the perturbed and
unperturbed series (multiplied by 100).

consumption growth, thereby increasing the risk-free rate. A positive disembodied shock x is

complementary to installed capital so the value of assets in place and growth opportunities rises.

By contrast, an embodied shock ξ lowers the value of existing assets V while increasing the value

of growth opportunities G. The net effect of an embodied shock is to lower total financial wealth

V +G. By contrast, a disembodied shock leads to an increase in financial wealth.

The value of new blueprints ν relative to total wealth W rises in response to either technology

shock, as we see in the last column of Figure 3. Importantly, the effect is quantitatively much larger

for the technological shock that is embodied in new projects compared to advances in technology

that affect both existing and new projects. This difference is important because the responses of

aggregate consumption in Figure 2 to technology shocks mask substantial heterogeneity in the

consumption paths of individual households. As we show next, larger changes in ν/W lead to

greater reallocation of wealth among households.

Technology shocks and individual consumption.—The current state of a household can be

summarized by its current share of total wealth, wi,t ≡Wi,t/Wt. The functional form of preferences

(13-14) together with our assumption that the scale of the household-level innovation process is

proportional to individual wealth imply that optimal individual consumption is proportional to

individual wealth. Then, a household’s consumption share is the same as its wealth share, ci,t = wi,t,
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A. Response to x (disembodied shock)
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0 20 40 60
0

0.01

0.02

0.03

years
0 20 40 60

0

2

4

6

years
0 20 40 60

0

2

4

6

years
0 20 40 60

0

2

4

6

years
0 20 40 60

0

0.5

1

1.5

years

B. Response to ξ (embodied shock)
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rf V +G G (solid) vs V (dotted) H ν/W
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Fig. 3.—Technology and Asset Prices. We plot the impulse response of the risk-free rate (rf ), and the value of
assets in place (V ), growth opportunities (G) and human capital (H), as well as the relative value of payments to
new innovators ν/W to the two technology shocks in the model. We construct the impulse responses taking into
account the nonlinear nature of equilibrium dynamics: we introduce an additional one-standard deviation shock at
time t = 0 without altering the realizations of all future shocks. The impulse responses are computed at the mean of
the stationary distribution of ω. In the first row, we report the difference between the mean response of the perturbed
and unperturbed risk-free rate (multiplied by 100). For all other series we report the log of the ratio of the perturbed
to the unperturbed series (multiplied by 100).

and individual consumption satisfies Ci,t = Ctwi,t. The dynamic evolution of households’ share of

aggregate wealth is
dwi,t
wi,t

= δh dt+
λ

µI

η νt
Wt

(
dN I

i,t − µI dt
)
, (27)

where N I
i,t is a Poisson process that counts the number of times that household i acquires a new

blueprint.

The evolution of a household’s relative wealth in (27) is conditional on the household’s survival;

thus, the first term captures the flow payoff of the annuity, as it is standard in perpetual youth OLG

models (Blanchard, 1985). The second term captures changes in the households’ wealth resulting

from innovation. Both the drift and the return to successful innovation depend on the fraction of

shareholder wealth that accrues to all successful inventors, η νt/Wt. This ratio is a monotonically

increasing function of ω, defined in (20). Each period, a household yields a fraction λ η νt/Wt of

its wealth share to successful innovators. This wealth reallocation occurs because households own

shares in all firms, which make payments to new inventors in return for blueprints. During each

infinitesimal time period, with probability µI dt, the household is itself one of the innovators, in

which case it receives a payoff proportional to η νtWi,t. The magnitude of wealth reallocation
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depends on the contribution of new investments to total wealth νt/Wt. As we saw in Section A., an

increase in either x or ξ implies that the equilibrium value of new blueprints to total wealth νt/Wt

increases. This increase in νt/Wt leads to an increase in the households’ idiosyncratic risk, similar

to the model of Constantinides and Duffie (1996).

The process of wealth reallocation following positive technology shocks is highly skewed. Equa-

tion (27) shows that the rise in gains from successful innovation, i.e., the rise in νt/Wt, implies

that most households experience higher rates of relative wealth decline, as captured by a reduction

in the drift of dwt. By contrast, the few households that innovate increase their wealth shares

greatly, as captured by the jump term νt/Wt dN
I
t . From the perspective of a household at time

t, the distribution of future consumption becomes more variable and skewed following a positive

technological shock, even though on average the effect is zero – positive technological shocks magnify

both extremely high realizations of w and the paths along which w declines persistently.

Figure 4 illustrates the impact of technology shocks on the consumption path of an individual

household. Our objects of interest are the households’ relative wealth share wi, consumption Ci,

and consumption adjusted for relative preferences C1−h
i whi . In the first three columns, we plot the

impulse response of these variables to the two technology shocks. In addition to the response of

the mean, we plot how the median of the future distribution of these variables changes in response

to the shocks. Unlike the mean, the median of w is not influenced by rare but extremely positive

outcomes, and instead reflects the higher likelihood of large gradual relative wealth declines in

response to technology shocks.

The first column of Figure 4 summarizes the role of incomplete risk sharing in our model. Neither

technology shock has an impact on the expected future wealth share w at any horizon, because in

our model technology shocks have, ex-ante, a symmetric effect on all households. However, the lack

of an effect on the average wealth share masks substantial heterogeneity in individual outcomes.

Specifically, the response of the median of the distribution is significantly negative at all horizons.

The very different responses of the mean and the median wealth share suggest a highly skewed

effect of technological shocks on individual households, which is key to understanding the effects of

technology shocks on the SDF in our model.

In the second column, we see that the responses of the mean and median future consumption

to a disembodied shock x are not substantially different. A positive embodied shock ξ, however,

leads to an increase in the share of value due to new blueprints νt/Wt, and thus to greater wealth

reallocation among households. The next column shows the role of relative consumption preferences.

If households care about their relative consumption wi in addition to their own consumption Ci,

then the impact of technology shocks on their adjusted consumption is a weighted average of the

first two columns.

The difference between the response of the mean and the median of the distribution of future

consumption highlights the asymmetric benefits of technology shocks. Since households are risk

averse, the mean response is insufficient to characterize the impact of technology on their indirect

utility. When evaluating their future utility, households place little weight on the extremely high

paths of w. Hence, the median response is also informative. In other words, in addition to their effect
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on the mean consumption growth, technology shocks also affect the variability of consumption because

they affect the magnitude of the jump term in (27). Even though the conditional risk of individual

wealth shares is idiosyncratic, this risk depends on the aggregate state of the economy. Therefore,

innovation risk affects the stochastic discount factor, similarly to the model of Constantinides and

Duffie (1996). To illustrate this connection, the fourth column of Figure 4 plots the increase in the

variance of instantaneous consumption growth – adjusted for relative preferences. We see that both

technology shocks lead to higher consumption volatility. The effect is substantially higher for ξ than

for x, again due to its higher impact on the returns to innovation νt/Wt.

A. Response to x: disembodied shock
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B. Response to ξ: embodied shock
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Fig. 4.—Technology, Household Consumption and the Stochastic Discount Factor. The first three columns of this
figure plot the impulse response of the household wealth share (wi), household consumption (Ci), and consumption
adjusted for relative consumption preferences C1−h

i whi . We construct the impulse responses taking into account
the nonlinear nature of equilibrium dynamics: we introduce an additional one-standard deviation shock at time
t = 0 without altering the realizations of all future shocks. The impulse responses are computed at the mean of the
stationary distribution of ω. We report the log difference between the mean (median) response of the perturbed
and unperturbed series in the solid (dashed) line. The fourth column plots the impulse response of the conditional
variance of instantaneous log consumption growth, adjusted for relative preferences. The last column shows the
impulse response of the equilibrium stochastic discount factor.

In sum, Figure 4 shows that the economic growth that results from technological improvements

is not shared equally across households. Specifically, innovation reallocates wealth shares from

most households to a select few. Although an increase in νt/Wt does not affect the expected wealth

share of any household, it raises the magnitude of unexpected changes in households’ wealth shares.

Since households are risk averse, they dislike the resulting variability of changes in their wealth.

Importantly, preferences over relative consumption (h > 0) magnify the negative effect of relative

wealth shocks on indirect utility. Households are averse to displacement risk not only because it

exposes them to additional consumption risk, but also because they fear being ‘left behind’ by
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subsequent increases in economic growth. Indeed, as we can see in the second row of Panel B, a

positive embodied shock increases the median consumption growth; however, the third row shows

that, once relative preferences are taken into account, the impact on the ‘consumption bundle’

that incorporates relative consumption preferences is negative. The resulting effect on households’

indirect utility has important implications about the pricing of these shocks, as we discuss next.

Last, we examine the SDF. Financial markets in our model are incomplete, since some of the

shocks (specifically, the acquisition of blueprints by individual households) are not spanned by the

set of traded financial assets. As a result, there does not exist a unique SDF in our model. Similar

to Constantinides and Duffie (1996), the utility gradients of various agents are not identical and

each can serve as a valid SDF. To facilitate the discussion of the aggregate prices, we construct an

SDF that is adapted to the market filtration F generated by the aggregate productivity shocks

(Bx, Bξ). This SDF is a projection of agent-specific SDFs (utility gradients) on F . See Section E of

the Online Appendix for more details.

The risk prices of the two technology shocks can be recovered by the impulse response of the

log SDF on impact. We plot these responses in the last column of Figure 4. Comparing panels A

and B, we see that the two technology shocks carry opposite prices of risk in our model. A positive

disembodied shock x negatively affects the SDF on impact, implying a positive risk premium. By

contrast, ξ has a negative risk premium. As a result, households value securities that provide a

hedge against states where ξ is high and x is low.

The difference in how the SDF responds to the two technology shocks stems primarily from the

response of the indirect utility term f(ωt) in the SDF. Both technology shocks x and ξ lead to an

increase in the permanent component χt of consumption, which causes the SDF to fall. However, in

the case of the embodied shock, the fall in indirect utility due to the unequal sharing of benefits from

technological progress is sufficiently large to offset the benefits of higher aggregate consumption. The

resulting demand for insurance against high realizations of ξ is driven by the endogenous increase in

the consumption uncertainty of individual investors.

B. Technology Shocks and the Cross-section of Firms

The firm’s current state is fully characterized by the aggregate state Xt; the probability of acquiring

new projects λf,t; the firm’s relative size,

kf,t ≡
Kf,t

Kt
, where Kf,t ≡

∑
j∈Jf,t

eξτ(j)Kj,t; (28)

and the firm’s average profitability across projects,

ūf,t ≡
1

Kf,t

 ∑
j∈Jf,t

eξτ(j) uj,tKj,t

 . (29)

The assumption that shocks to projects’ productivity uj are perfectly correlated if they are owned

by the same firm implies considerable dispersion in average profitability (29) across firms.
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Our focus is on understanding differences in asset returns between ‘value’ and ‘growth’ firms.

Typically, these categories are defined based on firms’ valuation ratios, such as the firm’s average

Tobin’s Q, or market-to-book ratio. In our model, a firm’s Tobin’s Q can be written as

logQf,t − logQt = log

[
Vt

Vt +Gt
(1 + p̃(ωt) (ūft − 1)) +

Gt

Pt +Gt

1

kf,t

(
1 + g̃(ωt)

(
λf,t
λ
− 1

))]
, (30)

where Qt is the market-to-book ratio of the market portfolio; Vt and Gt are defined in equations (24)

and (25), respectively; and p̃(ω) and g̃(ω) are defined in the Appendix.

Cross-sectional differences in valuation ratios (30) are mainly driven by the firm’s current

likelihood of future growth λf,t relative to its current size kf,t. Quantitatively, differences in ūf

play only a minor role, as we demonstrate in the Online Appendix. Firms with relatively high

levels of λf/kf are ‘growth firms’, since they derive more of their value from their future growth

opportunities rather than their existing operations. Conversely, firms with low levels of λf/kf derive

most of their market value from their existing operations, and we therefore term them as ‘value’

firms.

The impact of technology shocks on firm outcomes is related to the differences in their valuation

ratios. Specifically, how firms respond to technology shocks depends on whether they are ‘value’ or

‘growth’ firms. Technological progress lowers the cost of new investments, hence it benefits firms

with new investment opportunities (high λf,t). However, it also leads to displacement of installed

capital due to general equilibrium effects and therefore harms firms with a lot of installed assets

(kf,t). To see these heterogenous effects, we can express the profit flow of a firm f as

Πf,t ≡
∑
j∈Jf,t

Πj,t = φYt ūf,t kf,t. (31)

Equation (31) implies that cross-sectional differences in the sensitivity of firm profits to aggregate

technology shocks can be summarized by how the firm’s relative size kf responds to shocks. The

dynamics of kf are given by

dkf,t
kf,t

=a0
νt
Vt

(
λf,t
λ kf,t

− 1

)
dt+ a0

νt
Vt

1

λ kf,t

(
dNf,t − λf,t dt

)
, (32)

where a0 is a constant and Nf,t is a Poisson process that counts the number of times that firm f

has acquired a new project.

Just as technology shocks lead to wealth reallocation among households, they also lead to

resource reallocation among firms. Equation (32) shows that the value of new blueprints ν relative

to the value of installed capital V affects both the conditional growth rate as well as the dispersion

in growth rates across firms. The ratio ν/V is a monotonically increasing function of the state

variable ω. Focusing on the first term in (32), we see that high values of ν/V magnify the difference

in conditional firm growth rates between ‘growth’ firms (high levels of λf/kf ) and ‘value’ firms (low

levels of λf/kf ). The second term in (32) shows that high values of ν/V also increase the cross-

sectional dispersion in firm growth rates. Recall that the ratio ν/V responds sharply to a positive
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B. Response to ξ: embodied shock
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Fig. 5.—Technology Shocks and Firms. We plot the dynamic response of firm profits, investment, dividends and
stock prices to the two technology shocks x and ξ in the model. We construct the impulse responses taking into
account the nonlinear nature of equilibrium dynamics: we introduce an additional one-standard deviation shock at
time t = 0 without altering the realizations of all future shocks. We report separate results for two types of firms. The
solid line represents the responses for a Growth firm, defined as a firm with λf,t = λH and Kf,t = 0.5. The dotted
line indicates the responses for a value firm, defined as a firm with low investment opportunities λf,t = λL and large
size Kf,t = 2. For both firms, the level of average profitability is equal to its long-run mean, uf,t = 1. The initial
value of the state variable ω is set to its unconditional mean, ω0 = E[ωt]. Columns one and four plot percentage
changes, columns two and three plot changes in the level (since both dividends and investment need not be positive)
normalized by the aggregate dividend and investment at time t = 0.

embodied shock (ξ) but only modestly to a positive disembodied shock (x). Thus, technological

innovation, especially when it is embodied in new capital, increases the rate of reallocation across

firms – that is, the process of ‘creative destruction’.

To illustrate the heterogeneous impact of technology shocks on firm profitability and investment,

we examine separately two firms with high and low levels of λf/kf in Figure 5. As we see in panel

A, improvements in technology that are complementary to all capital lead to an immediate increase

in profitability for both types of firms. Growth firms are more likely to have higher investment

opportunities than the value firms; hence, on average, they increase investment. While growth firms

pay lower dividends in the short run, their payouts rise over the long run. As a result, the market

value of a growth firm appreciates more than the market value of a value firm. In panel B, we see

that value and growth firms have very different responses to technology improvements embodied

in new vintages. The technology shock ξ leaves the output of existing projects unaffected, since it

only increases the productivity of new investments. Due to the equilibrium response of the price

of labor services, the profit flow from existing operations falls. Growth firms increase investment,
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and experience an increase in profits and market valuations. In contrast, value firms have few new

projects to invest in, and therefore experience a decline in their profits and valuations.

In sum, growth firms have higher cashflow and stock return exposure to either technology shock

than value firms, and the difference is quantitatively larger for technological improvements embodied

in new capital vintages ξ versus shocks to labor productivity x. These differential responses of

growth and value firms to technology shocks translate into cross-sectional differences in risk and

risk premia.

III. Estimation

In this section, we describe how we calibrate the model to the data. Given that the majority of

households do not participate in financial markets, we first extend the model to include limited

participation.

A. Limited participation

A relatively small subset of households participate in financial markets. For instance, Poterba and

Samwick (1995) report that the households in the top 20% in terms of asset ownership consistently

own more than 98% of all stocks. Given the important role that inequality plays in the model,

allowing for this type of limited participation is likely quantitatively important.

We model limited participation by assuming that newly born households are randomly assigned

to one of two types, shareholders (with probability qS) and workers (with probability 1 − qS).

Shareholders have access to financial markets, and optimize their life-time utility of consumption,

just like the households in our baseline model. Workers are instead hand-to-mouth consumers. They

do not participate in financial markets, supply labor inelastically, and consume their labor income as

it arrives. Workers can also successfully innovate (just like shareholders); those that do so become

shareholders. Hence,

ψ ≡ µI + qS δ
h

µI + δh
(33)

represents the fraction of households that participate in financial markets.

B. Data and Estimation strategy

The market value of new blueprints νt plays a key role in the model’s predictions, both for the

dynamics of firm cashflows (32) and for the evolution of investors’ wealth (27). To take the model to

the data, we use data on patents and stock returns to construct an empirical proxy for νt following

Kogan et al. (2017). To examine the implications of the model, we aggregate these patent values by

constructing estimates of the average value of innovations in a given year νt at both the aggregate

as well as the firm level. To preserve stationarity, we scale these by (aggregate or firm) market

capitalization. We refer to these two measures as aggregate and firm innovation, respectively.

Section D in the Online Appendix provides further details on the construction of the variables used

in estimating the model.
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The model has a total of 21 parameters. We choose the probability of household death as

δh = 1/40 to guarantee an average working life of 40 years. We choose the likelihood of repeat

innovation µI = 0.13% so that, conditional on the other parameters, the model average top 1%

income shares are in line with the data. We estimate the remaining parameters of the model using

a simulated minimum distance method (Ingram and Lee, 1991). Specifically, given a vector X of

target statistics in the data, we obtain parameter estimates by

p̂ = arg min
p∈P

(
X − 1

S

S∑
i=1

X̂i(p)

)′
W

(
X − 1

S

S∑
i=1

X̂i(p)

)
, (34)

where X̂i(p) is the vector of statistics computed in one simulation of the model. Our choice of

weighting matrix W = diag(XX ′)−1 penalizes proportional deviations of the model statistics from

their empirical counterparts.

Our estimation targets are reported in the first column of Table 1. They include a combination

of first and second moments of aggregate quantities, asset returns, and firm-specific moments. Many

of the moments that we target are relatively standard in the literature. Others are less common,

but they are revealing of the main mechanisms of our paper. First, both the investment-to-output

ratio (It/Yt) as well as the relative value of new innovations (νt/Mt) are increasing functions of

ω in the model. Thus, the unconditional volatility of these ratios is informative about the model

parameters. Similarly, fluctuations in ω lead to predictable movements in consumption growth. We

therefore also include as a target an estimate of the long-run volatility of consumption growth using

the methodology of Dew-Becker (2014) in addition to its short-term (annual) volatility.

Second, our model connects embodied technology shocks to the return differential between

value and growth firms. We thus include as estimation targets not only the first two moments of

the market portfolio, but also the average value premium, defined as the difference in risk premia

between firms in the bottom versus top decile in terms of their market-to-book ratios (Q), following

Fama and French (1992). Given that the model has no debt, we create returns to equity by levering

the value of corresponding dividend (payout) claims by a factor of 2.5. This value lies between the

estimates of the financial leverage of the corporate sector in Rauh and Sufi (2011) (which is equal

to 2) and the values used in Abel (1999) and Bansal and Yaron (2004) (2.7 to 3).

C. Model Fit

Table 1 shows that the baseline model fits the data reasonably well. The model not only generates

realistic patterns for aggregate consumption and investment, but can also fit both the mean as

well as the dispersion in risk premia in the cross-section of firms. In addition, the model generates

realistic levels of dispersion and persistence in firm-level profitability, investment, innovation output

and valuation ratios.

On the asset pricing side, the main success of our model relative to existing work is that it

delivers realistic predictions not only about the equity premium, but also the cross-section of asset

returns. Specifically, the model generates realistic differences in risk premia between high-Q (growth)
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TABLE 1

Benchmark model: goodness of fit

Statistic Data
Model

Mean (5%) (95%) SQRD

Aggregate quantities
Consumption growth, mean 0.015 0.014 0.003 0.024 0.003
Consumption growth, volatility (short-run) 0.036 0.038 0.035 0.043 0.005
Consumption growth, volatility (long-run) 0.041 0.053 0.039 0.068 0.083
Shareholder consumption share, mean 0.429 0.464 0.437 0.491 0.006
Shareholder consumption growth, volatility 0.037 0.039 0.025 0.053 0.002
Investment-to-output ratio, mean 0.089 0.083 0.043 0.123 0.005
Investment-to-output ratio (log), volatility 0.305 0.288 0.149 0.506 0.003
Investment growth, volatility 0.130 0.105 0.083 0.126 0.037
Investment and consumption growth, correlation 0.472 0.373 0.170 0.537 0.044
Aggregate Innovation, volatility 0.370 0.369 0.219 0.619 0.000
Capital Share 0.356 0.354 0.312 0.385 0.001

Asset Prices
Market portfolio, excess returns, mean 0.063 0.067 0.052 0.080 0.003
Market portfolio, excess returns, volatility 0.185 0.131 0.119 0.143 0.087
Risk-free rate, mean 0.020 0.020 0.015 0.029 0.003
Risk-free rate, volatility 0.007 0.007 0.003 0.013 0.000
Value factor, mean 0.065 0.063 0.031 0.093 0.001

Cross-sectional moments
Investment rate, IQR 0.175 0.163 0.124 0.204 0.005
Investment rate, persistence 0.223 0.228 0.053 0.457 0.000
Tobin Q, IQR 1.139 0.882 0.611 1.147 0.051
Tobin Q, persistence 0.889 0.948 0.928 0.961 0.004
Firm innovation, 90-50 range 0.581 0.542 0.441 0.609 0.005
Firm innovation, persistence 0.551 0.567 0.519 0.623 0.001
Profitability, IQR 0.902 0.936 0.856 1.073 0.001
Profitability, persistence 0.818 0.815 0.796 0.830 0.000

Distance (mean squared relative deviation) 0.014

Note.—This table reports the fit of the model to the statistics of the data that we target. Growth rates and rates
of return are reported at annual frequencies. See main text for details on the estimation method and Appendix B
for details on the data construction. We report the mean statistic, along with the 5% and 95% percentiles across
simulations. We also report the squared relative deviation of the mean statistic to their empirical counterparts,
SQRDi = (Xi −Xi(p))2/X2

i .

and low-Q (value) firms. These patterns arise primarily from the fact that the two technology shocks

in the model carry opposite risk prices (as we saw in the last column of Figure 4), and the fact

that value and growth firms have differential exposures to the two technology shocks (as we saw in

Figure 5). Further, even though these are not our main objects of interest, the model also generates

a low and stable risk free rate. In this respect our model represents an improvement compared to

many equilibrium asset pricing models with production (see, e.g. Jermann, 1998; Kaltenbrunner
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and Lochstoer, 2010).10 The model does have some difficulty in generating sufficiently volatile stock

returns—stock returns in the model are smoother than their empirical counterparts by approximately

30%. As is the case with almost all general equilibrium models, the need to match the relatively

smooth dynamics of aggregate quantities imposes tight constraints on the shock volatilities σx and

σξ.

The model’s success in fitting the asset pricing moments does not come at the cost of counter-

factual implications for quantities. Examining the first ten rows of Table 1, we see that the model

generates realistic implications for aggregate quantities. Even in the few cases in which the point

estimates between the model and the data differ, the empirical moments can still be plausibly

observed in simulated data—that is, they are covered by the standard 90% confidence intervals

based on model simulations. Similarly, the bottom nine rows of Table 1 show that the model also

generates realistic firm-level moments. This is notable in itself, since existing models that fit the

cross-section of asset returns fail to match the cross-section of firm investment, and vice versa (see,

e.g. Clementi and Palazzo, 2015). Further, a notable feature of the data is that firm-level investment

and innovation exhibit relatively low persistence, while valuation ratios (Q) are highly persistent.

The model can largely accommodate this behavior because realized investment at the firm level

exhibits spikes—that is, firms only invest conditional on having a project. Valuation ratios depend

partly on expectations of future investment, and therefore are much more persistent.

D. Parameter Estimates and Identification

Table 2 reports the parameter estimates in the model, along with standard errors. To obtain some

intuition for which features of the data identify individual parameters, we compute the Gentzkow

and Shapiro (2014) measure of (local) sensitivity of parameters to moments (GS). To conserve space,

we only summarize the results for the parameters related to the non-standard features of the model.

We relegate a more comprehensive discussion of identification to Section A of the Online Appendix.

The parameters governing the volatility of the two technology shocks are of primary importance

for the model’s implications about the dynamics of aggregate quantities and asset prices. Accord-

ingly, their estimated values σ̂x = 8.2% and σ̂ξ = 11% are estimated with considerable precision.

Examining the GS sensitivity measure, we see that σx is primarily identified by the volatility of

consumption growth, and the correlation between consumption and investment. Conversely, σξ is

mostly identified by the volatility of investment growth, and the correlation between investment

and consumption. Recall from Figure 2 that both investment and consumption respond symmetri-

cally to the disembodied shock x; by contrast, investment and consumption respond initially with

opposite signs to ξ. Hence, the correlation between investment and consumption carries important

information on the relative importance of these two shocks.

The parameter that governs the share of households that participate in the stock market ψ is

relatively well estimated, with a point estimate of 0.15 and a standard error of 0.05. Our estimate

10These models are often hampered by the fact that consumption rises while dividends fall after a positive technology
shock, leading to a negative correlation between aggregate payout of the corporate sector and consumption (see e.g.,
Rouwenhorst, 1995). In Section C.4 of the Online Appendix, we show that consumption and dividends are positively
correlated in our setup, which helps the model deliver a sizeable equity premium.
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TABLE 2

Benchmark model: parameter estimates

Parameter Symbol Estimate SE

Preferences
Risk aversion γ 56.734 41.163
Elasticity of intertemporal substitution θ 2.341 2.867
Effective discount rate ρ 0.044 0.015
Preference weight on relative consumption h 0.836 0.067

Technology
Disembodied technology growth, mean µx 0.016 0.011
Disembodied technology growth, volatility σx 0.082 0.010
Embodied technology growth, mean µξ 0.004 0.018
Embodied technology growth, volatility σξ 0.110 0.025
Project-specific productivity, volatility σu 0.533 0.065
Project-specific productivity, mean reversion κu 0.210 0.023

Production and Investment
Cobb-Douglas capital share φ 0.427 0.023
Decreasing returns to investment α 0.446 0.096
Depreciation rate δ 0.029 0.011
Transition rate to low-growth state µL 0.364 0.098
Transition rate to high-growth state µH 0.021 0.006
Project mean arrival rate, mean λ 0.812 0.273
Project mean arrival rate, rel. difference high-low growth states λD 15.674 3.303

Incomplete Markets
Fraction of project NPV that goes to inventors η 0.767 0.391
Fraction of households that is a shareholder ψ 0.148 0.060

Note.—This table reports the estimated parameters of the model. When constructing standard errors, we
approximate the gradient of 1

S

∑S
i=1 X̂i(p) using a five-point stencil centered at the parameter vector p̂. In addition, we

approximate the sampling distribution of X (the empirical moment covariance matrix) with the sampling distribution
of Xi(p) in the model (the covariance matrix of model moments across simulations. See the Appendix for more details.

is largely in line with the facts reported in Poterba and Samwick (1995), who document that the

households in the top 20% in terms of asset ownership consistently own more than 98% of all

stocks. This parameter is primarily identified by the mean consumption share of stockholders. The

parameter that affects the division of surplus between shareholders and innovators is estimated

at η = 0.77 with a standard error of 0.39. Hence, approximately one-fourth of the value of new

investment opportunities in the economy accrues to the owners of the firm’s public securities.11 In

11A quantitative evaluation of the plausibility of this parameter is challenging due to the lack of available data on
valuations of private firms. However, if we interpret the selling of ideas to firms as the inventors creating new startups
that go public and are subsequently sold to large, publicly traded firms, this pattern is consistent with the empirical
fact that most of the rents from acquisitions go to the owners of the target firm (Asquith and Kim, 1982). In addition,
a high estimate of η is consistent with the idea that ideas are a scarcer resource than capital, and since the ‘innovators’
own the ideas, it is conceivable that they extract most of the rents from the creation of new projects. Another real
world example of an inventor is a venture capitalist (VC). A large value of η would be consistent with the evidence
that VC firms add considerable value to startups, but investors in these funds effectively capture none of these rents
(see, e.g. Korteweg and Nagel, 2016).
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general, this parameter has an ambiguous effect on the value premium. On the one hand, increasing

η increases the share of rents that go to innovators, and therefore increases the displacement risk

that is faced by shareholders. On the other hand, however, it reduces the overall share of growth

opportunities to firm value, which increases the volatility of the market portfolio—since the market

is now more vulnerable to displacement. Consequently, this parameter is mainly identified by the

average returns of the market portfolio and the value factor (which are noisily estimated), and to a

lesser extent by the long-run volatility of consumption. A higher long-run volatility of consumption

growth implies that the model needs a smaller value of η to match asset prices. Last, the parameter

governing the share of relative consumption h is identified primarily by the differences in risk premia

between the market and the value factor. Recalling the discussion in Figure 4, higher values of h

imply that households are more averse to displacement risk—they resent being left behind—and

hence increases the risk premium associated with displacement risk. However, higher values of h

also lower the household’s effective risk aversion towards aggregate—that is, non-displacive—shocks.

Since the equity premium compensates investors partly for this aggregate risk, increasing h lowers the

equity premium while increasing the mean returns of the value factor. Our baseline estimates imply

that households attach a weight approximately equal to 80% on relative consumption. The small

standard error (0.06) implies that this parameter is quantitatively important for the implications of

the model.

E. Sensitivity Analysis

Our model has several relatively non-standard features. To quantify how each of these features

contributes to our findings, we estimate the model imposing several parameter restrictions. We

summarize our conclusions here, and refer the reader to Section B of the Online Appendix for

further details. In brief, we find that the following three features are key for the performance of

the model: incomplete markets for innovation, preferences for relative consumption, and embodied

technology shocks. Eliminating any of these three features compromises the model’s ability to

simultaneously fit both the level and the cross-section in risk premia. In addition, the model can

largely accommodate a strong prior belief about an upper bound on η or h, as long as these features

are not eliminated fully. Put differently, cross-sectional differences in risk premia arise because of

displacement risk. To fit the data, the model requires that there is sufficient displacement risk,

and that households care enough about displacement. By contrast, the assumption of limited

participation is less quantitatively important: the model can still fit the data, albeit with a higher

estimated coefficient of relative risk aversion. Last, restricting the coefficient of relative risk aversion

to lie below 10 still results in risk premia that are not too different than the data.

IV. Additional Predictions: Model vs Data

In this section we examine the performance of the model in replicating some features of the data

that we do not use as explicit estimation targets, including income and wealth inequality, ‘asset

pricing’ anomalies of value and growth firms, correlations between consumption growth and asset
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returns or corporate payout, and the term structure of interest rates and risk.

A. Consumption, Wealth, and Income Inequality

One of the advantages of our incomplete markets model is that it has implications for inequality.

In the model, inequality arises because households cannot share the rents to innovation. Lucky

households that successfully innovate experience a temporary increase in their income due to the

proceeds from innovation; in addition, their wealth (and consumption) also increases. Here, we

compare the implications of the model for several measures of consumption, wealth and income

inequality in the data. Since the model is largely silent regarding inequality between middle- and

low-income households, whenever possible, we focus on the top end of the distribution.

We compute the following measures of inequality. Using the data of Piketty and Saez (2003) and

Saez and Zucman (2016), we compute average top income and wealth shares at the 0.1%, 0.5% and

1% cutoff. In addition, we use the SCF, we report top percentile ratios in income and wealth (net

worth) using the SCF weights. In order to be consistent with the model, we report these statistics

only for the households that report direct or indirect stock ownership.We also remove cohort and

age effects, although this does not have a major impact on these estimates. For completeness, we

report corresponding statistics using the CEX. However these should be interpreted with caution

because wealthy households are largely absent from the CEX. By contrast, the SCF over-samples

wealthy households, so the moments for wealth and income inequality are likely to be more reliable.

We replicate the same statistics using a long simulation from the model. To be as close to the data

as possible, we use the income, or wealth, of all households in the denominator, to make these

estimates comparable with the data in Piketty and Saez (2003) and Saez and Zucman (2016). By

contrast, when estimating the ratio of top percentiles, we only use the subset of households that

participate in financial markets.

Table 3 presents the results. Recall that the parameter µI is chosen to match the income share of

the top 0.1%. The rest of the statistics in Table 3 are not part of the estimation targets. Examining

the table, we note that the model is largely successful in replicating the magnitude of income and

wealth inequality, especially at the very top. Specifically, the top income and wealth shares are

largely in line with the data. Further, focusing on the distribution of income and wealth among the

stockholder sample, we can see that the model can largely replicate the empirical patterns.

The model differs from the data along some dimensions. First, the ratio of income between

households in the 90th to the 50th percentile is much higher in the model than in the data. The

reason is that in the model households are free to retrade claims on their future labor services wt;

wealthy households therefore purchase a larger fraction of ‘human wealth’ in order to have the same

ratio of financial to human wealth. This feature is essential in preserving the analytic tractability of

the model, but also implies somewhat larger income inequality among stockholders in the middle of

the distribution. Second, consumption inequality is somewhat higher in the model than in the CEX

data. In the model, all shareholders consume the same fraction of their wealth, hence consumption

inequality among stockholders is the same as wealth inequality. Top consumption shares differ

from top wealth shares due to the presence of non-participating households, who simply consume
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TABLE 3

Inequality moments

A. Consumption B. Wealth C. Income

Model Data Model Data Model Data

top 0.1% share (%, all HH) 5.3 0.7 12.1 13.2 5.6 5.6
top 0.5% share 11.2 2.5 26.2 26.2 11.5 10.8
top 1.0% share 16.7 4.2 36.5 32.6 15.6 14.2

99-90 ratio (stockholders) 3.3 1.7 3.3 5.7 3.5 4.2
99-95 2.4 1.5 2.4 3.2 2.5 2.9
95-90 1.4 1.2 1.4 1.8 1.4 1.5
90-50 5.6 1.8 5.6 5.1 5.6 2.5

Note.—Table compares measures of inequality between the model and the data. Data sources are the Consumption
Expenditure Survey (CEX), the Survey of Consumer Finances (SCF) and the data of Piketty and Saez (2003) and
Saez and Zucman (2016). The top income and wealth shares are from Piketty and Saez (2003) and Saez and Zucman
(2016). Top consumption shares are from CEX (1982-2010). Top shares are calculated relative to all households.
The top percentile shares of income (total income) and wealth (net worth) are from the SCF (1989-2013); we report
percentile ratios of the stock ownership sample (equity=1 in the SCF summary extracts) and after obtaining residuals
from cohort and year dummies and cubic age effects. We use a similar procedure for the CEX data. The corresponding
estimates in the model are computed from a long simulation of 10m households for 10,000 years. Percentile ratios
are computed among the subset that participates in the stock market. In the model, income equals wages, payout
and proceeds from innovations. In the data, we use the total income variable from the SCF, which includes salary,
proceeds from owning a business and capital income. In the Piketty and Saez (2003) data, we use income shares
inclusive of capital gains.

their wage income. However, an important caveat in this comparison is that wealthy households

are undersampled in the CEX, hence the empirical moments of consumption inequality should be

interpreted with caution.

In sum, we see that the model generates realistic patterns of inequality, especially at the very top.

This is important for several reasons. First, these moments indirectly rely on the parameters we

estimated in Section III., for instance, the share of surplus that accrues to innovators η. The fact that

the calibrated value produces realistic moments for inequality is comforting, given those parameters,

despite the fact that these were not explicit targets for calibration (with the exception of the income

share of the top 1% that is used to calibrate µI). Second, to the best of our knowledge, this is the

first general equilibrium asset pricing model that can generate realistic patterns of inequality.

B. Cross-sectional ‘asset pricing puzzles’

A stylized feature of the asset returns is that the CAPM does a poor job fitting the cross-section

of risk premia (Fama and French, 1992). A closely related puzzle is the existence of ‘risk factors’

in the cross-section of returns, for instance, the value factor. That is, spread portfolios formed

by trading on the top and bottom deciles of characteristic sorted portfolios, not only have sizable

CAPM alphas (they are mispriced by the CAPM) but they are substantially volatile, while also

exhibiting low correlation with the market portfolio. As Cochrane (2005) writes, this ‘comovement

puzzle’ is a challenge for existing general equilibrium models. These models largely imply that the
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market portfolio is a summary statistic for all aggregate risk in the economy.

TABLE 4

Cross-sectional ‘asset pricing puzzles’

Mean Std CAPM α CAPM β R2

BE/ME Spread 0.061 0.165 0.041 0.254 0.071 Model
0.064 0.184 0.050 0.263 0.051 Data

(0.022) (0.004) (0.021) (0.038) (0.015)

I/K spread -0.020 0.173 -0.015 -0.080 0.009
-0.056 0.112 -0.067 0.190 0.068
(0.017) (0.003) (0.016) (0.029) (0.023)

E/P spread 0.040 0.110 0.020 0.252 0.099
0.062 0.141 0.069 -0.120 0.016

(0.019) (0.004) (0.019) (0.035) (0.010)

Note.—Table reports the mean returns, volatilities, CAPM α’s and β’s, and the regression R2 from a market
model for three spread portfolios: the value spread, defined as the difference in returns between the bottom and top
decile in terms of market-to-book; the investment spread (I/K), defined as the return spread in decile portfolios of
firms sorted based on their past investment rate; and the earnings-price spread (E/P), defined as the returns spread
in decile portfolios based on earnings-to-price ratios. Model estimates are based on a long simulation of the model
(10,000 years). The moments in the data are based on portfolios available from Kenneth French’s website. Data
period for the value premium excludes data prior to the formation of the SEC (1936 to 2010); data period for the
investment strategy (I/K) is 1964-2010; data period for the earnings-to-price strategy is 1952-2010. Standard errors
for the empirical moments are included in parentheses. Standard errors for R2 are computed using the delta method.

Our model can replicate these patterns, even though they are not part of the estimation targets.

As we see in top two rows of Table 4, the model not only generates a realistic differences in risk premia

between high-Q (growth) and low-Q (value) firms, but it also generates return comovement—the

‘value factor’ of Fama and French (1993). In both the model and in the data, the value minus growth

portfolio is highly volatile but essentially uncorrelated with the market portfolio. In addition, it

replicates the failure of the Capital Asset Pricing Model (CAPM) in accounting for these return

differences. These patterns arise primarily from the fact that the two technology shocks in the

model carry opposite risk prices (as we saw in the last column of Figure 4), and the fact that

value and growth firms have differential exposures to the two technology shocks (as we saw in

Figure 5). Specifically, as we can see in the bottom six rows of Table A.2, the value factor and the

market portfolio have different exposures to the disembodied shock x; since the disembodied shock

x has to be rather volatile to match the volatility of consumption — and the correlation between

consumption and investment — this pushes the model to have a relatively low correlation between

the market and the value factor, even when this correlation is not an explicit part of the estimation

targets. As long as the model matches both the equity and the value premium, this low correlation

between the market and value will result in a substantial CAPM alpha.

In the next set of rows, we show that the model can to a lesser degree, also replicate two other

closely related ‘anomalies’ in the data, the high-minus-low investment strategy (Titman, Wei, and

Xie, 2004) and the high-minus-low earnings-to-price strategy (Rosenberg, Reid, and Lanstein, 1985).
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The mechanism that delivers these patterns is essentially the same as that which delivers the value

spread: firms with high investment and low earnings-to-price ratios are high growth firms (high

λf/Kf ) and are valued by investors because they help hedge displacement risk. However, at the

current parametrization, the model cannot fully match the differences in risk premia observed in

the data: the model-implied risk premia are approximately one-fourth to one-half of their empirical

values. In particular, in the case of the investment spread, in our current model, investment is a noisy

proxy for the firm’s current growth opportunities. We conjecture that extending the production

side of the model along the lines of Kogan and Papanikolaou (2013) will deliver a much closer fit to

the data.

C. Consumption and Asset Returns

We next examine the implications of the model for the joint distribution of consumption and asset

returns, specifically, returns to the market portfolio and the value factor. Since our baseline model

features limited participation, we report results separately for stock holders, using the data of

Malloy, Moskowitz, and Vissing-Jorgensen (2009). We compute correlations of asset returns and

dividends from the market portfolio with the consumption of stockholders in absolute terms, but

also relative to the consumption of non-participants. We follow standard practice and aggregate

consumption growth over multiple horizons. We report results using 2-year growth rates, but the

results are qualitatively similar using longer horizons.

TABLE 5

Consumption and asset returns

Consumption Aggregate Shareholder

Correlation with:
Market Value Market Value

portfolio factor portfolio factor

Model 0.66 0.00 0.71 0.12
Data 0.39 0.16 0.21 0.35

(0.15) (0.13) (0.12) (0.18)

Note.—Table compares the empirical correlations between three consumption measures (aggregate consumption,
consumption of stock holders, and relative consumption of stockholders) with the corresponding correlations in the
model. Market returns are in excess of the risk-free rate. The value factor is the difference in returns between stocks
in the top and bottom decile in terms of book-to-market. The empirical correlations with shareholder consumption
are based on the data in (Malloy, Moskowitz, and Vissing-Jorgensen, 2009), which cover the 1982-2002 period. We use
the convention of computing correlations of 1-yr asset returns with 2-yr consumption growth.

Table 5 shows that the baseline model generates empirically plausible levels of correlation

between asset returns and aggregate consumption. Consumption and aggregate stock market returns

are more highly correlated in the model, but the difference between the correlations in the model

and in the data is not always statistically significant. The model also reproduces the low empirical

correlation between aggregate consumption growth and the value factor, which implies the failure of

the Consumption CAPM to capture the value premium in simulated data. Further, we see that

the model replicates one of the main findings of Malloy, Moskowitz, and Vissing-Jorgensen (2009):
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returns of value firms covary more with shareholder consumption than returns of growth firms. The

model output does differ from the data in one respect, it generates a somewhat excessive correlation

of shareholder consumption and the market portfolio (equal to 21% in the 1982-2002 sample versus

71% in the model).

D. Term structure of interest rates

Next, we examine the predictions of our model for the price of zero coupon bonds. The price of

a zero coupon bond of maturity T can be computed as Pb(t, T ) = Et(ΛT /Λt) while zero coupon

yields can be computed as

y(T, t) = − 1

T
logPb(t, T ). (35)

We solve for (35) numerically, and report the moments of bond yields in Table 6. The model

generates a real yield curve that is on average upward sloping. In addition, average excess returns

on real bonds are positive, and rise with maturity. Real bonds are risky in the model because the

risk-free interest rate is positively correlated with the stochastic discount factor. Specifically, recall

that in Figure 3 interest rate is mostly sensitive to the embodied shock ξ, which as Figure 4 shows,

is positively correlated with the SDF.

TABLE 6

Model: Term structure moments

Maturity 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

Yield, average (%) 2.0 2.0 2.1 2.2 2.2 2.3 2.4 2.4 2.5 2.6
Yield, volatility (% ) 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9
Excess return, mean (% ) 0.1 0.3 0.5 0.6 0.8 0.9 1.1 1.3 1.4
Excess return, volatility ( %) 0.3 0.6 0.9 1.2 1.5 1.8 1.8 2.3 2.5

Note.—Table reports the moments for the term structure of real interest rates that is implied by the model under
the baseline calibration. Bond excess returns are reported in excess of the risk-free rate. We report moments across a
long simulation of the model (10,000 years).

The implications of our model for the yield curve are in stark contrast with most leading

equilibrium asset pricing models, which typically predict a downward sloping real yield curve and

negative yields on real bonds (Bansal and Yaron, 2004; Bansal, Kiku, and Yaron, 2012; Wachter,

2013).12 By contrast, the observed term structure of Treasury inflation-protected securities (TIPS)

has never had a significant negative slope and the real yield on long-term TIPS has always been

positive and is usually above 2% (Beeler and Campbell, 2012).

E. Term structure of risk and risk prices

Our model generates a sizable equity premium due to joint movements in aggregate dividends and

the stochastic discount factor. Here, we briefly examine how risk in the total payout of the market

12A notable exception is Campbell and Cochrane (1999): the working paper version shows that their endowment
economy model also replicates an upward sloping real yield curve.
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portfolio at different horizons contributes to asset prices. To do so, we compute prices of corporate

payout ‘strips’, that is, a claim on the total payout of the corporate sector at a future date T ,

Pd(t, T ) = Et

[
ΛT
Λt
DT

]
, (36)

where total payout Dt is given by equation (22).

In Figure 6, we plot the risk premia, and volatilities, of corporate strips across maturities of one

to twenty years. We report results for unlevered claims. In Panel A, we see that average returns

of dividend strips are decreasing sharply across maturities. Specifically, risk premia range from

4.8% for the shortest maturity strips (1 year) to 2.1% for strips with maturity of 20 years. For

comparison, the mean returns on an unlevered claim to corporate payout is 2.9%. Hence, the equity

premium in the model is concentrated at shorter maturities. In Panel B, we also see that the prices

of dividend strips at shorter maturities are more volatile than those of longer-maturity strips.
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Fig. 6.—The model-implied moments of corporate payout strips. We plot the return means and standard deviations
for the term structure of corporate strips that are implied by the model under the baseline calibration. We compute
returns in excess of the risk-free rate and without leverage, using a long simulation of the model (10,000 years).

The above patterns are qualitatively consistent with recent empirical literature. Specifically, van

Binsbergen, Brandt, and Koijen (2012) show that risk premia of dividend ‘strips’ on the market

portfolio exhibit a downward-sloping term structure, with the short end of the curve accounting for

most of the equity premium. In addition, they show that shorter maturity dividend claims are more

volatile. Last, they argue that these patterns are in stark contrast with most existing equilibrium

asset pricing models—though, an important caveat in this comparison is that the empirical evidence

pertains to claims on cash dividends, whereas the model results pertain to net payout.

In our model, these patterns arise naturally in equilibrium. Specifically, we saw in Panel A

of Figure 2 that the contribution of the dividend dynamics induced by x to the equity premium

rises modestly with the horizon. Panel B implies the opposite pattern; the contribution of the

dividend dynamics induced by ξ to the equity premium is concentrated in the short and medium

run, and the rise in long-run dividends contributes negatively to the equity premium. Thus, the

term structure of dividend strip risk premia is downward sloping. To conserve space, we refer the

reader to Section C.1 of the Online Appendix for more details.
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F. Innovation and aggregate quantities

Our analysis thus far follows closely the existing literature and evaluates the success of the model

based on the model-implied correlations between macroeconomic quantities and prices. In the

remainder of this section, we use the estimated value of new innovations that we constructed using

the methodology of Kogan et al. (2017) to examine more directly the predictions of the model’s

main mechanism.

We begin by documenting the correlation between the rate of innovation ν/M and aggregate

quantities and prices. We then compare the empirical results with those in simulated data. One

potential shortcoming of our empirical measure of νt is that it identifies the timing of the innovation

with the year when that patent is issued to the firm. While this timing is helpful in estimating the

value of the patent based on the firm’s stock market reaction, it is an imprecise measure of the

actual timing of when the invention took place. To ensure that this potential timing mismatch does

not affect our results, we report correlations across periods of one to three years.

In rows A and B of Table 7 we compare the correlations between (log differences of) the rate of

innovation νt/Mt and consumption growth—both aggregate consumption as well as the consumption

of shareholders. We see that the rate of innovation has a weak negative relation with both measures

of consumption growth. In our model, innovation is also weakly negatively correlated with the

consumption growth of shareholders, and is essentially uncorrelated with the aggregate consumption

growth. Importantly, the magnitudes are comparable, suggesting that the model mechanism does

not rely on counter-factually large responses in aggregate consumption growth. Row C shows that

both in the data and in the model, changes in the rate of innovation νt/Mt are positively correlated

with investment growth. In the data, the estimated correlations are lower than in the model (27-30%

vs 60-66%) and the difference is statistically significant. Though there are clearly other drivers of

investment growth in the data than technological innovation, the empirical results suggest that the

contribution of innovation to investment growth is not trivial.

Last, rows D and E of Table 7 compare the correlation between changes in the rate of innovation

and asset returns, specifically the market portfolio and the value factor. In the data, changes in

innovation are negatively correlated with returns to the market portfolio, though the relation is

stronger at the 1-year versus the 3-year frequency. In the model, the relation is also negative, and

mostly comparable to the data. Last, we see that the value minus growth factor is negatively

correlated with changes in the rate of innovation at all frequencies. Importantly, the magnitude of

this correlation is comparable between the data and the model.

In sum, we see that the correlations between the aggregate rate of innovation and key quantities

in the model are largely consistent with their empirical counterparts. We view the degree the model

can quantitatively replicate these new facts—especially since they are not part of our estimation

targets—as providing further support for the main mechanism.
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TABLE 7

Innovation, aggregate quantities and asset returns: Model vs Data

Value of new inventions (νt/Mt)
Correlation

(t→ t+ 1) (t→ t+ 2) (t→ t+ 3)

A. Consumption growth, aggregate 0.04 0.00 0.00 Model
-0.02 -0.08 -0.14 Data
(0.16) (0.16) (0.15)

B. Consumption growth, shareholders -0.13 -0.18 -0.18
-0.22 -0.13 -0.13
(0.11) (0.11) (0.13)

C. Investment growth 0.72 0.76 0.78
0.30 0.27 0.30

(0.12) (0.10) (0.12)

D. Market portfolio -0.35 -0.33 -0.33
-0.50 -0.30 -0.09
(0.11) (0.13) (0.13)

E. Value factor -0.34 -0.45 -0.49
-0.34 -0.44 -0.52
(0.09) (0.09) (0.12)

Note.—This table reports the correlation between differences in the rate of innovation (νt/Mt) and returns to the
market portfolio, the value factor (the return spread between the top and bottom decile portfolios of stocks sorted on
book-to-market), aggregate consumption and investment growth (NIPA), and the consumption of shareholder using
the data from Malloy, Moskowitz, and Vissing-Jorgensen (2009). For portfolio returns, we compute the cumulative
portfolio return between t and t+ h. For all other variables, including innovation, we use the log difference between t
and t+h. We compute correlations at horizons of 1 to 3 years. Numbers in parentheses are standard errors, computed
using Newey-West with maximum lag length equal to three plus the number of overlapping observations. Data period
is 1933 to 2008.

G. Firm innovation and Tobin’s Q

We next focus our attention at the more micro level, and specifically, on firm-level outcomes. The

model implies that part of the reason why the value premium arises is that growth firms innovate

more than value firms. This section examines this prediction in the data—that is, it should be

viewed as a direct test of equation (30). Specifically, we are interested in whether a firm’s valuation

ratio (Tobin’s Q) predicts the firm’s innovative output. We therefore estimate

νf,t+1

Mf,t+1
= a+ b logQf,t + cZf,t + εf,t. (37)

Table 8 presents the results. We see that, both in the data as well as the model, Tobin’s Q

is a strong predictor of whether the firm is likely to innovate in the future once we control for its

current size. Importantly, the estimated elasticities are comparable between the model and the data.

Furthermore, the positive relation survives controlling for whether the firm successfully innovated in

the current period. Since the likelihood of successful innovation is somewhat random, Tobin’s Q

carries additional information in the model about the firm’s current state relative to whether the
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firm innovated in the past. The same is true in the data.

TABLE 8

Valuation ratios and future innovation: Model vs Data

νf,t+1/Mf,t+1 (1) (2) (3) (4)

logQf,t -0.038 0.244 0.244 0.125 Model
-0.007 0.211∗∗∗ 0.169∗∗∗ 0.080∗∗∗ Data
(0.018) (0.023) (0.022) (0.015)

logKf,t 0.160 0.160 0.045
0.189∗∗∗ 0.243∗∗∗ 0.096∗∗∗

(0.014) (0.018) (0.010)

νf,t/Mf,t 0.569
0.657∗∗∗

(0.062)

Observations 70,987 70,987 70,986 65,823
R2 0.055 0.194 0.309 0.571
Fixed Effects T T T, I T, I

Note.—This table reports the results of estimating equation (37). We include controls in Zf,t for the firm’s current
size, time dummies, and lagged values of the dependent variable. We also consider specifications with industry fixed
effects, defined at the 3-digit SIC level. The first row reports results in simulated data based on a long sample of
10,000 years. The next two rows report results in Compustat data, along with standard errors clustered by firm. In
addition to Q, we include controls for firm size (Kf,t in the model, Compustat:ppegt in the data) and lagged values of
firm innovation. Since firms that never patent may not be a valid control group, we restrict the sample to only include
firms that have filed at least one patent. ***, **, and * denote statistical significance at the 1%, 5%, and 10% level,
respectively.

H. Technological innovation and firm displacement

Having established that growth firms are indeed more likely to innovate than value firms, we next

turn to firm profitability. As we see in equations (31)-(32) and Figure 5, the model has specific

predictions about the response of firm profitability to changes in the technology frontier as a function

of the firm’s current state (value or growth). Here, we examine these predictions directly. To get

sharper estimates of the impact of technological progress on firm profitability, we take advantage

of the substantial heterogeneity in innovation outcomes across industries (see, for instance, the

working paper version of Kogan et al., 2017). Specifically, we construct a direct analogue of ω at

the industry level as νI\f,t/MI\f,t—we aggregate over all firms in industry I excluding firm f .

We estimate the impact of technology on log firm profitability using the following specification,

log Πf,t+T − log Πf,t = (a0 + a1Gf,t)
νI\f,t

MI\f,t
+ a2Gf,t + cZf,t + εt+T . (38)

The dependent variable is the change in the firm’s log profits between time t and t+ T . We are

interested in the impact of industry innovation νI\f,t/MI\f,t on firms with different levels of Tobin’s

Q. In particular, we classify firms as either value (Gf,t = 0) or growth (Gf,t = 1) depending on
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whether their Tobin’s Q falls below or above the industry median at time t.

TABLE 9

Technology shocks and firm profitability

∆πf,t→t+h
Horizon

(1) (2) (3) (4) (5)

νI\f,t

/
MI\f,t -0.029 -0.044 -0.055 -0.063 -0.069 Model

-0.037∗∗∗ -0.036∗∗∗ -0.043∗∗∗ -0.040∗∗∗ -0.043∗∗∗ Data
(0.004) (0.005) (0.007) (0.008) (0.009)(

νI\f,t

/
MI\f,t

)
×Gft 0.012 0.032 0.049 0.065 0.078

0.024∗∗∗ 0.024∗∗∗ 0.030∗∗∗ 0.032∗∗∗ 0.031∗∗

(0.004) (0.006) (0.008) (0.008) (0.009)

Observations 68,818 63,618 59,278 55,321 51,551
R2 0.118 0.137 0.150 0.149 0.157

Note.—This table summarizes the estimated coefficients a0 and a1 from equation (38) in historical data and in
simulated data from the model. The vector of controls Zf,t includes: the firm’s own innovation outcome – the analogue
of the dNf,t term in equation (32), measured as νf,t/Mf,t; controls for lagged log profits πf,t and log size Kf,t to be
consistent with (31)-(32); and time and industry dummies. We omit the time and industry dummies in simulated
data. We report standard errors in parenthesis clustered by firm. The model estimates are from a long panel (5,000
years) comprised of 1,000 firms. We scale variables to unit standard deviation to facilitate comparison between the
model and the data. ***, **, and * denote statistical significance at the 1%, 5%, and 10% level, respectively.

Table 9 compares estimates of (38) across horizons of 1 to 6 years in the model and in the

data. In the data, technological innovation by other firms in the same industry primarily hurts

value (low Q) firms. In relative terms, growth firms benefit. These patterns are consistent with the

model. In particular, the estimated coefficient a0 in the data is negative and statistically different

from zero, implying that the impact of technological progress on the expected profitability of low-Q

firms is negative. Further, the magnitudes are comparable between the model and the data. More

importantly, consistent with the model’s main mechanism, the estimated coefficient a1 is positive

and statistically significant across horizons—implying that that the profits of value firms are more

negatively exposed to industry novation shocks than the profits of growth firms. The magnitudes

are somewhat comparable at shorter horizons (1-3 years), but they differ statistically at longer

horizons. That is, the model implies somewhat larger heterogeneity between value and growth firms

at longer horizons than what we see in the data. This difference may be partly driven by the fact

that the smallest growth firms in the economy are not in the Compustat database, along with the

fact that the less successful firms may exit the sample—the model has no firm exit.

I. Technological innovation and inequality

A key feature of our model is that a small subset of households—those that successfully innovate—

capture a substantial fraction of the rents from innovation. By contrast, the costs of innovation—the

displacement of the installed capital stock—are shared by all market participants. As a result, our

model has predictions about the relation between technological innovation and changes in inequality,
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especially at the very top. Our goal in this section is to examine this implication of the model in

the data using emiprical measures of inequality.

Our first measure of inequality is based on the difference between average and median consumption

in the economy. Recalling Figure 4, which shows that improvements in technology have very different

effects on the average versus the median future consumption path of an individual household, a

natural measure of inequality is the difference between average (NIPA) consumption and the median

in the cross-section of stock-owning households in the CEX. Our second measure of inequality aims

to capture the idea that the benefits of innovation are shared by a handful of households. We use

the data of Piketty and Saez (2003) to estimate the ratio of the 0.1% top income share to the top

1%. This ‘fractal’ measure of inequality captures the share of the top 1% that accrues to the top

0.1%, and displays similar behavior as the top income shares (Gabaix, Lasry, Lions, and Moll, 2016).

To examine the quantitative implications of the model, we construct each of these two measures in

simulated data from the model.

For each of the three inequality measures, we estimate the following specification:

log INEQT − log INEQt = a0 + bT

(
log

(
νT
MT

)
− log

(
νt
Mt

))
+ c1 INEQt + c2 log

(
νt
Mt

)
+ εt,

(39)

where ν/M is equal to the average value of new projects (patents) over the total market capitalization.

To evaluate the magnitude of the empirical estimates, we also estimate (39) in a long simulation of

the model (10,000 years).
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Fig. 7.—Technology shocks and inequality. We plot the estimated coefficient b1 from equation (39). For consumption
inequality, we compute the difference between log aggregate per capita NIPA personal consumption expenditures and
the logarithm of median consumption in the Consumer Expenditure Survey (CEX). To be consistent with the model,
we estimate the median only using the set of households that are stockholders. Given the short time dimension in the
CEX, we focus on horizons T of up to 5 years. For income, we use the series of top fractile income shares of Piketty
and Saez (2003) that include capital gains. Income in the model is defined as the sum of wage income, capital income
(‘payout’) plus payments to innovators. We examine horizons T of 1 to 10 years. We plot empirical point estimates
along with 90% confidence intervals using Newey-West errors. Model results are computed using a long panel of 10m
households over 10,000 years.

Figure 7 plots the estimated coefficients bT across horizons in the data (solid line) and in the

model (dotted line). In Panel A, we see that changes in the value of new innovations νt/Mt are

associated with increases in consumption inequality in the data. Further, the estimated coefficients
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in the data are quantitatively close to those implied by the model. One concern with using CEX

data is that it tends to under-sample rich households. Even though using the full consumption

distribution of the CEX is problematic for our purposes, the effect of undersampling on the median

should be minor. However, we emphasize that, since the full extent of the sample selection biases in

the CEX data is unknown, these results should be interpreted with caution.

In Panel B we examine the response of top ‘fractile’ income shares. The estimated coefficients

bT are mostly positive and statistically significant over horizons of more than three years; a one

standard deviation increase in ω is associated with an increase in income inequality of about 5% over

10 years. In the model simulations, the increase in income inequality is quantitatively similar in the

long run (approximately 6%), but it occurs much faster than in the data. In the model, increases in

ω raise the income that accrues to innovators; since the measure of innovating households is very

small, increases in ω increase income inequality at the very top of the distribution. However, unlike

reality, this process of reallocation occurs instantaneously in the model, and hence the immediate

increase in income inequality. That said, existing models have typically the opposite problem, that

is, they generate an increase in income inequality that is too slow relative to the data (Gabaix

et al., 2016). Hence, we view our model as also contributing to the literature focusing on the rapid

increase in income inequality over the last few decades.

V. Conclusion

We develop a general equilibrium model to study the effects of innovation on asset returns. The main

feature of our model is that the benefits from technological progress are not shared symmetrically

across all agents in the economy. Specifically, technological improvements partly benefit agents

that are key in the creation and implementation of new ideas. As a result, technology shocks

also lead to substantial reallocation of wealth among households. Embodied shocks have a large

reallocative effects, whereas disembodied shocks have mostly a level effect on household consumption.

In equilibrium, shareholders invest in growth firms despite their low average returns, as they provide

insurance against increases in the probability of future wealth reallocation. Our model delivers

rich cross-sectional implications about the effect of innovation on firms and households that are

supported by the data.

Our work suggests several promising avenues for future research. First, labor income in our

model is homogenous, and therefore workers benefit from both types of technological progress. In

practice, however, technological advances are often complementary to only a subset of workers’ skills.

Recent evidence, for example, shows that the job market has become increasingly polarized (Autor,

Katz, and Kearney, 2006). Thus, quantifying the role of technological progress as a determinant

of the risk of human capital may be particularly important. Second, technological progress tends

to disrupt traditional methods of production, leading to periods of increased uncertainty. If some

agents have preferences for robust control, higher levels of uncertainty will likely increase the agents’

demand for insurance against improvements in technology embodied in new vintages. Last, our

model implies that claims on any factor of production that can be used across different technology
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vintages (as, for instance, land) can have an insurance role similar to the one played by growth firms

in our current framework. Our model would therefore imply that claims on such factors should have

lower equilibrium expected returns.
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